
MATHEMATICS OF COMPUTATION 
VOLUME 60, NUMBER 202 
APRIL 1993, PAGES 699-718 

OPERATIONAL QUADRATURE METHODS 
FOR WIENER-HOPF INTEGRAL EQUATIONS 

P. P. B. EGGERMONT AND CH. LUBICH 

ABSTRACT. We study the numerical solution of Wiener-Hopf integral equations 
by a class of quadrature methods which lead to discrete Wiener-Hopf equations, 
with quadrature weights constructed from the Fourier transform of the kernel 
(or rather, from the Laplace transforms of the kernel halves). As the analytical 
theory of Wiener-Hopf equations is likewise based on the Fourier transform of 
the kernel, this approach enables us to obtain results on solvability and stability 
and error estimates for the discretization. The discrete Wiener-Hopf equations 
are solved by using an approximate Wiener-Hopf factorization obtained with 
FFT. Numerical experiments with the Milne equation of radiative transfer are 
included. 

1. INTRODUCTION 

The approximate solution of Wiener-Hopf integral equations 

(1.1) x(t) + k(t -T) X(T) dT = f(t), 0 < t < x, 

has received attention from mathematicians of different schools and back- 
grounds, partly because of direct applications of such equations in mathemat- 
ical physics, partly because of the insight that the study of these equations 
gives to the treatment of Fredholm integral equations over 'large' intervals and 
of dual integral equations, and further because of the rich mathematics that 
comes along with their theory. Apart from the fundamental article of Krein 
[18], which gives a complete analytical solution theory of equations (1.1) with 
absolutely integrable kernel, we mention numerically oriented work of Gohberg 
and Fel'dman [13], Prossdorf and Silbermann [22, 23], Atkinson [5], Stenger 
[28], Sloan and Spence [26, 27], Anselone and Baker [1], Chandler and Gra- 
ham [7], Graham and Mendes [15], Elschner [10], Gahler and Gahler [1 1], and 
Anselone and Sloan [3, 4]. 

In this paper we consider the application of operational quadrature methods 
to the numerical solution of Wiener-Hopf integral equations, continuing work 
done in [19] and in our joint paper [9]. These quadrature methods lead to 
discrete Wiener-Hopf equations 

00 

(1.2) xn+hEk(n-j;h)xj=fn, n=O,1,2,.... 
j=0 
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where for a meshwidth h > 0, xn is to approximate x(nh), and k(n; h) are 
suitably defined quadrature weights. In [19, ? 11], it was shown for equations 
(1.1) with real symmetric kernel k, that the discretized equation (1.2) arising 
from an A-stable operational quadrature method is uniquely solvable if the 
continuous equation is so, and for all positive meshwidths the inverses of the 
discrete Wiener-Hopf operators are bounded in 12 by the L2(1R+) operator 
norm of the continuous inverse. 

In the present work the emphasis will be on l??1 error and stability estimates, 
which become available through results from [9], and we extend our results 
to nonsymmetric Wiener-Hopf equations. For monotone equations a theory 
analogous to [19] can be developed. In general, if only the Krein conditions 
for unique solvability of (1.1) hold, then there are stability restrictions on the 
meshwidth. Still, for small enough h the discretized Wiener-Hopf operators are 
shown to have uniformly bounded inverses in all IP spaces ( 1 < p < 00 ). We 
also show that exponential decay of both the kernel and the right-hand side in 
(1.1) yields exponential decay of the discrete solutions, with a mesh-independent 
rate. 

A further topic is the actual solution of the discrete Wiener-Hopf equation 
(1.2). As a very efficient alternative to the usual procedure of truncating the 
equation and solving the thus arising Toeplitz system of linear equations, we 
propose here to use an approximate Wiener-Hopf factorization obtained with 
FFT. I In the case of exponential decay this allows us to compute the solution of 
(1.2) to the level of the discretization error with O(h-I log h12) operations, as 
h -O 0. Numerical experiments with the Milne equation of radiative transfer 
illustrate the performance of the methods. 

2. CONDITIONS ON THE TRANSFORMS OF THE KERNEL 

The integral equation (1.1) is considered as an operator equation in LP (R+) 
for 1 < p < o, 

(2.1) (J + )x =f , E LP(R+)) 

where jr is the identity operator, and X denotes the integral operator in (1. 1). 
For k E L1 (R)1, the Krein necessary and sufficient conditions for the invert- 

ibility of Jf + % in LP (R+) are, Krein [ 1 8], 

(2.2a) 1 + k(w)) : 0 for all ) E R, 
. 00 

(2.2b) index(l + k)= j- d,,arg (1 + k(wo)) = 0 

where k(w)) is the Fourier transform of k: 

(2.3) k(w) = j k(t)e-1wt dt w( E R . 
-00 

Condition (2.2b) says that the closed curve {1 + k(w): w) E R} does not encircle 
the origin. Here, 11 = 1R U {oo}, and k(ox) = limc)?O k(w) = 0 by the 
Riemann-Lebesgue lemma. 

IThe approximate Wiener-Hopf factorization can effectively be used also as a preconditioner in 
iterative methods for the solution of finite Toeplitz systems of equations. Cf. Chan and Strang [6] 
who use conjugate gradients with a circulant preconditioner. This application is, however, outside 
the scope of the present paper. 
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The Krein conditions are implied by the much stronger monotonicity (or 
coercivity) condition 

(2.4) Re(l + k(w)) > y for all co E11 

where y is some fixed positive number. We note that for real symmetric kernel 
k, conditions (2.2) and (2.4) for some positive y are equivalent, because for 
such kernels the Fourier transform takes only real values. 

Instead of imposing smoothness assumptions on k, we will assume that the 
following sectorial conditions are satisfied: We let K? (s) be the Laplace trans- 
forms of the functions k(?t), t > 0, i.e., 

t00 

(2.5) K?(s) = j k(?t)e-st dt, Res > 0 

and we assume that there is an angle i < 2K, and positive constants a and 
,B, such that 

(2.6a) K+ (s) and K_ (s) are analytic and bounded 
in the sector I argsl < n - 

(2.6b) K?(s) - K?(O) =(s) , as s- 0 in the sector, 

(2.6c) K?(s) = &(s-) , as s -x oc in the sector. 

These conditions can be shown to be equivalent to the following: The kernel 
halves k(?t) are analytic in a sector I arg tI < I - i' with Y' < I7, and are 
bounded there by Ik(?t)l < const-min{ltlI-1, ltl-1-}. Hence k E LI(R) 
and a weak singularity may occur at 0. For example, kernels with logarithmic 
singularity such as the exponential integral El or the modified Bessel function 
Ko, which arise in applications, are included here. 

We note for later use that 

(2.7) k(w)) = K+(iw) + K_(-iw) , ) E 1R . 

Remark. Although the above sectorial conditions are certainly much stronger 
than would be necessary, we have included them here for the following reasons: 
The approximation theory in [19] is based on sectorial assumptions, and so is a 
lemma from [9] which is essential for the 1? and general /P theory (see Lemma 
3.1 below). There is no limitation on the obtainable order of approximation 
of operational quadrature methods under sectorial conditions. In contrast, if 
the Laplace transforms K? are analytic and suitably bounded only in a half- 
plane, then the operational quadrature methods have to be based on A-stable 
discretizations, and their approximation order cannot exceed 2. See [20] for a 
nonsectorial approximation theory. 

3. OPERATIONAL QUADRATURE METHODS APPLIED 

TO WIENER-HOPF EQUATIONS 

As in [19], the quadrature weights k(n; h) in (1.2) are defined as the coeffi- 
cients of the generating function, cf. (2.7), 

00 

(3.1) h , k(n; h) n = K+(3(C)/h) + K_(((-1)/h) , E C, 4] 1 
n=-oo 
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where 5 (') is given as the quotient of the generating polynomials of a linear 
multistep method for the solution of differential equations, see e.g., [16], 

d d 
Z aYn+j = h fljy+j, n > O 

j=0 j=0 

that is, 

d d 

(3.2) 6 (c) = E jd-j / flj d-j 
j=0 j=0 

We assume here that the linear multistep method is consistent of order M and 
A(fo)-stable with an angle (p greater than ' of (2.6), i.e., 

3(C) has neither zeros nor poles on the closed unit disk I < 1 
with the exception of a simple zero at C = 1, 

(3.3b) arg 5(C)I < 7r - ( for some ( > 0 , 

(3.3c) h-1((e-h) = 1 +6&(hM) for some M > 1 . 

The following lemma collects important properties of the quadrature weights. 
This is a reformulation of Lemma 6.3 in [9] (with RA replaced by K? ). 

Lemma 3.1. Under the conditions (2.6), (3.3) on k and (5 the quadrature weights 
k(n; h) satisfy for all h > 0 and all integer n and I 

Ik(n; h)I < const - b (InhI) 
00 

h Z lk(n+l; h) -k(n; h)I < e(llhl) 
n=-00 

where e E C[O, oc), with e(O) = 0, is an increasing function, and b E LI(Rli+) 
is defined as b(t) = min{t- 1, t-a-I}, with a , ,B from (2.6). 

We denote the discrete Wiener-Hopf operator in (1.2) by Kh, so that for 
Xh = {xn }n>o we have 

(3.4) [Khxhbn = h Z k(n-j; h)xJ n > 0 . 
j=0 

From Lemma 3.1 we know that sup {hI ??0 Ik(n; h)l: h > O} < 0 . Con- 
sequently, we have for 1 < p < 00 

(3.5) Kh IP -? IP , with llKhllp ?< const 

where the constant is independent of h > 0. 
To get the full order of accuracy M, end correction terms have to be added 

in (1.2). For appropriate correction weights K(n, j; h) to be determined in ?4 
we let the small-rank operator Uh be given for a fixed integer J as 

J 

(3.6) [Uhxh]n = hZ,K(n, j; h)xj , n > 0 
j=O 
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and the Wiener-Hopf integral equation (1.1) is now approximated by the per- 
turbed discrete Wiener-Hopf equation 

(3.7) Xh + (Kh + Uh)xh = rhf 

where rh denotes the restriction operator 

(3.8) [rhf]n = f(nh) , n > 0 . 

The end-term correction Uh will be constructed in such a way that (Kh + Uh )rhx 
is a "better" approximation to Xx. 

We are now interested in whether the discrete equation (3.7) has (always) a 
unique solution xh, and in how to estimate the approximation error xh - rhx . 
An elementary error analysis gives 

(3.9) Xh -rhx = (I + Kh + Uh) [(Kh + Uh)rhx-rrhx7X] 

So now the question is to show (e.g.) that for appropriate ho > 0 we have 

(3.10) sup JJ(I+Kh + Uh)' 1JlP < oo, 
h<ho 

(3.1 1 ) hl || '1PII(Kh + Uh )rhx-rhXxl IP < const * hm 

under appropriate smoothness conditions on x. In ?4 we discuss (3.1 1), and 
(3.10) is considered in ??5 and 6. 

4. QUADRATURE ERROR 

In this section we study the quadrature errors associated with the operational 
quadrature method. In particular, we are concerned with establishing inequality 
(3.11) under appropriate conditions on k, 3 and x. The estimates follow 
from Lubich [19] and Eggermont and Lubich [9], cf. also Eggermont [8]. For 
M an integer we let W?? M(R+) c LI (R+) be the subspace consisting of those 
functions on R+ that together with their derivatives up to order M belong to 
LI (R+). The norm on W?? M(R+) is defined as 

M 

IIXIIW-,M = Z IIX(')IIL 
m=O 

Theorem 4.1. Under the assumptions (2.6), (3.3) on the kernel k and the dis- 
cretization method 3 of consistency order M we have for an appropriate end- 
term correction Uh of the form (3.6) (with J = M - 1) the error bound 

(4.1) J| (Kh + Uh)rhx - rh%xlll. < const * hM * .lxll woo,M 

for all x E WOO, M(R+) . The constant const is independent of the meshwidth h 
and the function x . Moreover, 

(4.2) 11 Uh 11JJ < const * h 
where u = min(l, fl), with fl > 0 of (2.6c). 

The end-term correction Uh can be chosen as follows [19]: Let t* > 0 be 
fixed. The correction weights are then determined such that the quadrature 
formula is exact for polynomials up to degree M - 1 over the interval [0, t*], 
i.e., 

[(Kh + Uh)rhP - rhXP]n = 0 for 0 < nh < t*, 
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for all polynomials p of degree at most M - 1. This gives a Vandermonde 
system of linear equations for the computation of the correction weights. For 
nh > t* they are chosen either as K(n, j; h) = (cj - l)k(n - j; h) or as 
(cj - l)k((n - j)h), where cj (j = 0, 1, .. ., M - 2) are the weights of the 
Mth-order Newton-Gregory formula (e.g., co = 1 for M = 2, the trapezoidal 
rule). 

Proof of Theorem 4.1. Suppose that the end correction Uh has been constructed 
as described above. We split the quadrature error as 

[(Kh + Uh)rhx - rhXx]n = e+ + e-I 

with 
n M-1 t 

en+ = h Z k+(n - j; h)x(jh) + h Z K(n, j; h)x(jh) - ] k+(t - T)x(T) dT, 
1=0 j=0 

n t 

e- = h Z k_(n - j; h)k(jh) - k_(t - T)k(T) dT 
j=-00 00 

where t = nh, k(T) = x(-T), k?(t) = k(+t), and k?(n; h) are the coefficients 
of the generating functions (cf. (3.1)) 

00 

(4.3) h Z k?(n; h)Cn = K?(5(C)/h), 4 < 1. 
n=o 

It follows from Lemmas 7.2-7.4 of [9] (which in turn are based on Theorem 
3.1 of [19]) that e+ is bounded by the right-hand side of (4.1), uniformly in n 
and h. If x (and thus x ) has compact support, then Lemma 7.4 of [9] shows 
that 

le- I < C . hM . IIX(M)IILoo 

For general x E W?? M(Rl+) the result then follows by taking smooth trunca- 
tions of x and using the absolute integrability of the kernel and the uniform 
absolute summability of the weights. 

It remains to verify the bound (4.2). The proof of Corollary 3.2 of [19] 
shows that JK(n, j; h)l < C(nh)f-1 for 0 < nh < t*, and Lemma 3.1 yields 
that jk(n; h)l < C(nh)-l- with a of (2.6b) for nh > t* . In view of the 
construction of Uh, these bounds imply (4.2). n 

We remark that /P estimates (3.11) with p $ oc are obtained under the 
same assumptions on k and r5 and with the same construction of Uh, if x E 
Woo,M(IR+) with x(M)(t)l < const (1 +t)- with a> 1. We omit the details. 
For p :$ 1 one has still 

(4.4) 11UhIllp - O as h - O . 

We remark further that a similar construction of end-correction weights to re- 
store Mth-order convergence can be done for functions x which are not smooth 
at 0, but which are known to have an expansion of the form 

I 

x(t) = , aqi$(t) + .(t) 
i=O 



OPERATIONAL QUADRATURE METHODS FOR WIENER-HOPF INTEGRAL EQUATIONS 705 

where x E W?? M( R+) with x(0) = x'(0) = ..= -(M-1)(O) = 0, and the Xi 
are given "singular functions", e.g., fractional powers or polynomials multiplied 
with a logarithm. Details have been worked out by Gienger [12]. 

5. SOLVABILITY AND STABILITY IN THE MONOTONE CASE 

In this section we consider the solvability of the discrete equations (1.2) and 
(3.7) as well as the stability inequality (3.10), when monotonicity is preserved 
under discretization. For A-stable methods, i.e., those with Re6((c) > 0 for 
all I I < 1, this turns out to be automatically satisfied under the monotonicity 
condition (2.4). For A((p)-stable methods with tp < 27 we have to demand 
that (2.4) hold on a bigger region: 

(5.1) Re(1+K+(s)+K-(Y))>y for Iargsl= -( , 

where (p is the same as in (3.3b). Note that for f = 27r this condition is exactly 
the monotonicity condition (2.4), because of (2.7). 

The proof of the following theorem for p = 2 is in the style of Lubich [19], 
and from this, the general case follows with results of Eggermont and Lubich 
[9]. 

Theorem 5.1. Let 1 < p < oc. Under the conditions (2.6) and (3.3) on the kernel 
k and the discretization method 6, and assuming the monotonicity condition 
(5.1), the discrete Wiener-Hopf equation (1.2) has for every h > 0 a unique 
solution Xh = {x,},>o E 1P for every fh = {fj},>o E IP . Moreover, there exists 
a constant c such that the solution Xh satisfies the estimate IIXh I I ?P C IIfh I IP 
uniformly in h > 0, or equivalently, 

(5.2) sup 1I (I+ Kh-1IIP <C 
h>O 

Proof. The first fact to observe is that the Krein conditions for the discrete 
Wiener-Hopf equation (1.2) are, Krein [18] and (3.1), 

(5.3a) a(4) dIf 1 + K+ (6()(/h) + K_ (6(C-1)/h) :$ 0 for all 41 = 1 

def 1 27 

(5.3b) index a = 2 I do arg a(e-') = 0. 

Now consider the function T(s) = 1 + K+ (s) + K_ (s-) . Since K? are analytic 
in the sector I arg sI < n - (0, it follows that Re P is harmonic there. Since 
P(s) -? 1 as Isl -> 00 in the sector, we may apply the maximum principle, see, 
e.g., Protter and Weinberger [24, Theorem 2], to ReP to conclude with the 
help of (5.1) that for all s in the sector, 

ReT(s) > min { ReT(u): arg l = Xr - } >Y. 

The A(fo)-stability condition (3.3b) now shows that Rea(C) > y for all 141 = 1 
and all h > 0, from which both (5.3a) and (5.3b) follow. We also observe that 
if u E 12, then by two applications of the Parseval formula, see Stein and Weiss 
[25], we obtain (with uf(0) = Zn?o u,ein0) 

27t 

Re (u + Khu, u)12 = Re 27, a(e'0)Iu(6)I2 d6 

27 d 
> Y 1 1 I (0) 12 y0 ylull122 
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Consequently, for all u E 12 we have IIu + KhuII/2 > YIIUI112. Since I + Kh 
is invertible by (5.3), this shows that (5.2) holds with c = 1/y for p = 2. 
With Lemma 3.1 it then follows from [9, Theorem 4.1] that (5.2) holds for 
p = oo, and with the discrete analogue of [9, Theorem 8.3] then also for all 
p, < p?0o. O 

Corollary 5.2. Let 1 < p < o0. Under the assumptions (2.6), (3.3), (5.1) on k 
and 3 there exists an ho > 0 such that for all 0 < h < ho the 'corrected' discrete 
Wiener-Hopf equation (3.7) is uniquely solvable in IP and, moreover, 

sup I| (I+ Kh + Uh) 11P < ?? 
h<ho 

Proof. We write I + Kh + Uh = (I + Kh)(I + Wh) with Wh = (I + Kh) 
- Uh . 

From Theorem 5.1 and (4.4) it follows that IIWhlp -* 0 as h -* 0, so that 
there exists an ho > 0 such that for 0 < h < ho we have IIWhIIlp < . Then 
I + Wh is invertible, and 11(I + Wh)' Ilip < 2, and the corollary follows. O 

Remark. Note that the choice of ho in Corollary 5.2 is nearly constructive, since 
it depends on quantities which can be computed. The norm II Uh II is available 
in principle, as is an estimate for 11(I + Kh)' -I, at least in the 2-norm. 

6. SOLVABILITY AND STABILITY UNDER THE 'PLAIN' KREIN CONDITIONS 

We now consider what happens when (5.1) is replaced by the much weaker 
Krein conditions (2.2a-b). We note here that the combination of an A((o)-stable 
method (with fo < 27r) and the monotonicity condition (2.4) on the half-plane 
(as opposed to the monotonicity condition (5.1) on the bigger sector) does not 
appear to give stronger conclusions than the 'plain' Krein conditions do. 

Theorem 6.1. Let 1 < p < o0. Under the conditions (2.6) and (3.3) on k and 
;, and assuming the Krein conditions (2.2a-b), there exists an ho > 0 such that 

for all 0 < h < ho the discrete Wiener-Hopf equation (1.2) has a unique solution 
in IP for right-hand sides in IP, and 

(6.1) sup 1I(I+Kh) 1I1P < 00. 
h<ho 

Remark 6.2. We note that Corollary 5.2 applies here as well, once Theorem 6.1 
has been shown. 

Remark 6.3. We note that Theorem 6.1, resp. Corollary 5.2, combined with the 
estimates of Theorem 4.1 gives us convergence in the IP norm on the whole 
half-line. For p < o0 this still holds after some form of truncation is considered 
for the approximate solution of the infinite system (3.7). For p = 00, without 
any assumptions about a decay of the solution as t - oo0, we can expect only 
convergence on compact subsets of R+ for the truncated systems, see Anselone 
and Baker [1], Anselone and Sloan [4], Anselone and Lee [2]. 

Proof of Theorem 6.1. There are two aspects to Theorem 6.1. One is the invert- 
ibility of the operators I + Kh, for suitably small h, the other is the uniform 
boundedness of the inverses as exemplified by (6.1). 

(a) The essential observation in the proof of the invertibility is that for small 
h the values of 6(C)/h either lie very close to the imaginary axis, or else are very 
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large, so that the estimates K?(s) = (s-f) are meaningful. Consequently, we 
will have that either a(4), see (5.3a), is very close to 1 + k(co) for suitable co, 
or a(4) is close to 1. In either case we have that a(4) $7 0 if (2.2a) holds. By 
the same reasoning, under condition (2.2b), a(4) cannot encircle the origin as 
C runs through the unit circle, so that index a = 0. Hence, the discrete Krein 
conditions (5.3) are satisfied for small h, and the invertibility in IP follows. 

(b) We now consider the uniform boundedness aspect for the case p = oo. 
Other values of p will be considered later. So we consider equation (1.2) 
rewritten as 

(6.2) Xh + KhXh = fh 

where fh E 10. By the discussion in part (a), for h small enough this equa- 
tion has a unique solution Xh E 100, but we need to bound llxhll . in terms of 
IIfh I Ii.. It is helpful to introduce the operator 7rh: 10 -* L?? which carries a se- 
quence u E 1?? into its piecewise linear interpolant on the mesh { nh: n > 0}: 
[7rhu](nh) = un for n > 0. From (6.2) we have that 

7(hXh + 5 7(hXh - (7Ch - 7(hKh)Xh = 7Thfh 

and since, by (6.2), xh = fh - Khxh , this finally gives that 

(6.3) 7ThXh + 7rhXh- hXh = gh 

where gh = 7(hfh + (7lrh - 7rhKh)fh and 

(6.4) Fh = (7rhKh - 7(h)Kh 

We note that IIghIloo < const. IIfhIl _, and we prove below in Lemma 6.4 that 
II hII(lO- ,L?) -*0 as h -* . If we now apply (I + )1 to both sides of (6.3), 
and then restrict to the points nh, we get that 

Xh-rh(I+ X) lhXh = rh(I +X)lgh 

and since now Irh (I+X) -D I h IlOO -* 0, it follows that IIxhI1/o ?const IIghl 1. < 
const. IIfhII . . This is equivalent to (6.1) for p = oc . 

(c) Knowing now that (6.1) holds for p = oc, we claim that it holds for 
p = 1 as well. The reason for this is that we may consider the equation adjoint 
to (I. 1), viz., x + *x = f: 

(6.5) x(t) + j k(T - t) x(T) dr = f(t) , 0 < t < oo 

The operational quadrature weights associated with this equation (6.5) are given 
precisely by hk(-n; h), i.e., the operational quadrature approximation to (6.5) 
is precisely the equation adjoint to (1.2), viz., Xh + Kh*xh = fh 

00 

(6.6) xn+hZ,k(j-n;h)xj=fn n > 0. 
1=0 

The Krein conditions for equations (6.5) and (6.6) are exactly the same as for 
the original equations (1.1) and (1.2). It follows that if (6.1) holds for p = o0, 
then it also holds with Kh replaced by Kh*, i.e., 

sup 11 (I+ K*) 11loo < 00 
h<ho 
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but this is equivalent to (6.1) for p = 1 . So we now have that (6.1) holds for 
p = 1 and p = oc. By the M. Riesz interpolation theorem, Stein and Weiss 
[25], it follows that (6.1) holds for all p in between as well. 5 

In the proof above we used the following lemma, which is reminiscent of a 
similar result for compact integral operators. 

Lemma 6.4. There holds II (7:hKh - 7rh)KhIIl(1o,L??) -* 0 as h 0 

Proof. Let u E 100. Then Lemma 3.1 implies that 

J[KhU]n - [Khu]ml < d(|n - mlh) Iluil. 

with d(t) = e(t) + const * ti . Now apply Theorem 4.1 for M = 1 with x = 
7h Kh u . Then 

(6.7) || (Khrh - rh%) 7(hKh uIIl < const (h Ik7ThKh u|Woo,l + h' IIthKhUIILO) 

Now 
|| 

(7rh Ku)h'U I sup P [Khu]n+l - [Khu]nl < (d(h)/h) |ull100 
n ~~h 

and llrhKh ullLOO = llKhulllOO < const * Ilull100, from which it follows that the 
right-hand side of (6.7) is dominated by hllUlllI for some gh ` 0 El 

7. EXPONENTIAL DECAY 

If eitk(t) E L1(R) and eitf(t) E LO(R+) for some A > 0, then it is reason- 
able to expect that eAtx(t) E LO(R+) as well, with x(t) the solution of (1.1). 
This is actually true when the following shifted Krein conditions hold, see Krein 
[18, Theorem 14.1], 

(7.1a) 1 + k(co + iA) 7) 0 for all co E R, 

(7. lb) indexW,,(1 + k(co + iA)) = 0 

because then (1.1) may be written as 

(7.2) y(t) + j e (t-T)k(t - r) y(T) dr = eAtf(t) , t E R+ 

and y(t) _ eAtx(t). Now (7.1a-b) are the Krein conditions for the Wiener- 
Hopf equation (7.2), and the conclusion follows. In this section we want to 
discuss the discrete analogue of this result. It appears that we need to modify 
the assumption (2.6) on k accordingly, i.e., eIltlk(t) should satisfy (2.6). This 
amounts to 

K+ (s - A) and K_ (s - A) are analytic and bounded 

(7.3a) in the sector I argsI < ir - 
(7.3b) K?(s -iA) -K?(-)) =&(s) as s -* 0 in the sector, 

(7.3c) K?(s - A) = &(s f) as s -* oo in the sector. 

We then have an exponentially weighted analogue of Lemma 3.1: 
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Lemma 7.1. Under the assumptions (7.3) on k and the conditions (3.3) on 3 
there exists for every ,u < A an hA > 0 such that the following bounds are valid 
for h < h,: 

ik(n ; h)lI < const e-glnh I b(inhi), n = O, 1 , ?2, .. 

fl-00 h , leAlI(n+l)hl k(n + I; h) - eAlnhlk(n; h)l < e(ilhk) ,I = O,~ ?1, ?2.. 
n=-oo 

where e E C[O, oo), with e(O) = 0, is an increasing function, and b E LI (1R+) 
is defined as b(t) = min{t- I, t-a-I}, with a, f, from (7.3). 

The proof of this lemma is analogous to that of Lemma 6.3 in [9], taking 
now an integration contour shifted to the left by an amount A. We omit the 
details. 

We are now ready to quote the theorem on the exponential decay. At this 
point it is merely a corollary to Theorem 6.1. It is helpful to introduce the space 
pth of sequences {xnn}>o for which the exponentially weighted sequence 

{ e'Axn } is in IP, and whose IP norm defines the lp '1ih norm of {xn } 

Theorem 7.2. Let 1 < p < oc . Under the conditions (7.3) and (3.3) on k and 3, 
and assuming the shifted Krein conditions (7.1 a-b), there exists for every < i 

an hA > 0 such that for all 0 < h < hA the discrete Wiener-Hopf equation (1.2) 
has a unique solution in the exponentially weighted space lp,Ah for right-hand 
sides in lP, h, and 

sup II(I+KhI) Ilp,uh < X 
h <hU 

8. APPROXIMATE DISCRETE WIENER-HoPF FACTORIZATION 

In this section we study the approximate solution of the discrete Wiener-Hopf 
equation 

00 

(8.1) Z an-4xj = fn n > 0 
1=0 

where the sequence {an }I0o is absolutely summable, and its symbol 

00 

(8.2) a(4) = EanCn 
n=-oo 

satisfies the Krein conditions: 

(8.3a) a(4) -O0 for 141 = 1 
(8.3b) index a(4) = 0 . 

As shown in Krein [18, ?13], the equation (8.1) then has a unique solution 
x = {xn}n>o E IP for every f = {f}nn>o E lp ( 1 < p < oo), which can be 
obtained (in theory) from a Wiener-Hopffactorization 

(8.4) a(4) = a- (')a+(') , 11= 1 . 
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Here the coefficients a' of a?(C) vanish for negative, resp. nonnegative sub- 
scripts n . The factors a? (c) are obtained by setting 

00 -1 00 

(8.5) log a () =:Ebn Cn E bnn+EbC b_ b(C) + b+ (C) 
n=-oo n=-oo n=O 

and by letting 

(8.6) a? (C) := exp(b? (C)) 

which clearly yields (8.4). The solution of (8.1) is then given as the coefficient 
sequence of 

(8.7) E Xnc x(4) =+ p (f((?)) 

where f(4:) = ?=O n fn , and P+ denotes the operator that carries an arbitrary 
Laurent series into its principal part: 

00 \ 00 

(8.8) P+ E cnn) = EcnCn 
n=-oo n=O 

We are now ready to describe the algorithm for the approximate solution of 
(8.1). This is a finite analogue of the above procedure, which works with se- 
quences of length 2N, such as x = {X-N, -, XN_1 }. We let F denote the 
discrete Fourier transform of length 2N: 

N-1 

(8.9) [FX]m = mtWmxn , -N < m < N-1 
n=-N 

where co eilN ,with its inverse F1 given by 

N-1 

(8.10) [F-'.k]n = O -mn fm -N < n < N-1 I 
m=-N 

Further, we introduce the cutting operator n1+ by setting 

(8.11) ~[11+x]n = , n ,.. 

In the following algorithm all operations on sequences, such as multiplication, 
division, taking the logarithm, and exponentiation are pointwise. 

Algorithm 8.1. Approximate solution of the discrete Wiener-Hopf equation (8. 1) 
Factorization: 

a :={a(w)m)}IN-I where a) = e2lN 

b := loga, 

b+ :Fpl+F- b, 

a+ :=exp (b+) 
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Solution procedure: 

f:=Ff, f={O,O,.,0O,fo,fl, JN-1f}, 

ui:= f *a^+/a, 

ui+ := Fri+F-'u^, 

x := u~+/a+, 
{Xn} =1N x := F-1x 

Approximate solution: {xO, xl, XI. , XN I, 0, 0, * - 

With the use of FFT, this algorithm requires 61(N log N) operations. We will 
give two convergence results for Algorithm 8.1: under minimal assumptions in 
Theorem 8.2 and for geometrically decreasing sequences in Theorem 8.3. There 
also the error decreases geometrically with N, as will be shown by an analysis 
based on the aliasing formula for approximate Fourier coefficients and Cauchy's 
estimates for Laurent series coefficients. Note that after the above 'truncation 
procedure', we still have uniform convergence on the whole real line, thanks to 
the exponential decay, cf. Remark 6.3. 

To indicate the dependence of the approximate solution on the truncation 
parameter N, we add a superscript N to all sequences appearing in Algorithm 
8.1. In particular, the algorithm computes approximate solution values x N for 
0 < n < N-i1, and xn = 0 for n > N. 

Theorem 8.2. Consider the discrete Wiener-Hopf equation (8.1) where {an }I"O 
is absolutely summable and its symbol satisfies the Krein conditions (8.3). For 
{ff}o e 11, Algorithm 8.1 converges in the 11 norm: 

0a 
00 n |n- Xn| -- 0 as N oo .o 

n=o 
Proof. We work with the Wiener algebra 7 consisting of the functions c(4) = 

00=-o CnCn on the unit circle with absolutely summable Fourier coefficients 
{cn}??o and equipped with the norm lIcII|- = E' lInI - 

For c(C) e 7 we let 

N-1 

(8.12) (INC)(C) = CNn 

n=-N 

denote the trigonometric polynomial of order 2N which interpolates c(4) in 
the points com = exp(7rim/N) , -N < m < N- 1 . Note that the interpolation 
property is just the relation {c(wm)} = F{cN} . The aliasing formula, see 
Theorem 13.2a in Henrici [17], 

00 

(8.13) cN = , cf+l.2N 

I=-00 

shows that IN : -* _ is a bounded linear operator which converges strongly 
to the identity: 

(8.14) IIINcc_CII_ 0 as N -*o , forall c et . 



712 P. P. B. EGGERMONT AND CH. LUBICH 

The same evidently holds for the operator JN: :f - 7f defined by the partial 
sum 

N-1 

(8.15) (JNc)(4) = ECnn 
n=-N 

With these preparations, we can reformulate Algorithm 8.1 in the following 
way: 

Factorization: 

(8.16a) a+4f(4) = exp (P+IN log a()) 
Solution procedure: 

(8.16b) XN(C) = IN 1 N (JNf)( )+ 

This gives xN(4) = ZN-N Xn of Algorithm 8. 1. 
By the Wiener-Levy theorem, the Krein conditions (8.3) imply that log a(') 

and 1 l/a(C) are again in O. Moreover, P+ and exp: Of --* O are continuous 
operators. Together with the strong convergence of IN and JN to the identity, 
this shows that xN converges in r to x of (8.7). This is the desired result. El 

We now turn to geometrically decreasing sequences. 

Theorem 8.3. Consider the discrete Wiener-Hopf equation (8.1) whose symbol 
a(4) is assumed analytic and without zeros in the annulus p < IC < ? /p (O < 
p < 1), and of index 0. The right-hand side is assumed to satisfy Ifn I < cpn 
for n > 0. Then there are constants ' < a < 1 and C < oo such that the error 
of Algorithm 8.1 is bounded by 

|n - Xnl < - pa) + P n > O 

provided that N is so large that paN < c'(1 - pa)2. The constant C can be 
chosen to depend only on c, c', and on a bound of I log a(')I in the annulus. 
Proof. We consider Algorithm 8.1 again in the reformulation (8.16). We thus 
have to study approximation properties of IN and JN, and boundedness of 
the operator P+, when they are applied to functions analytic in an annulus. 
Suppose for this that the Laurent series c(4) = E' - CnCn satisfies 

Ic(O)l < M, P < 141 < l/p . 
The aliasing formula (8.13), combined with the Cauchy estimates 

IcnI < Mp'n' forall n, 
gives 

ICN-| < M. (pn + p-n) lp2h N<n -I 

and consequently for 0 < a < 1 and all C with pl- < II < I/ppl-, 

IINc() - c()l < 2M * p M N 

|p+INC(C) _p+C(C)| < M l 
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Similarly, we have in this annulus also 

IjNC(C) _ C(C)l < M. * a 
- I- p~ 

Repeated use of these estimates in (8.16) leads to the stated result for n < N- . 
The result for n > N follows by applying the Cauchy estimates to x(4) of 
(8.7). 0 

Remark. Theorems 8.2 and 8.3 remain valid for the following two modifications 
of Algorithm 8.1: 

* Instead of taking b+ := F+b in the third step of Algorithm 8.1, one might 
take a symmetric splitting b+ = {b+}Nb-lN with 

bn5 n = 1, ..., N- 1, 

b+:=l} bn 5 n =O,-N, 

0 O, n =-(N- 1), ...,5 -l 

For a real symmetric sequence {an}, this has the advantage that then a = I&_+2 
in the modified Algorithm 8.1. 

* If the sequence {an } is known rather than its symbol a(4), then one can 
modify the beginning of Algorithm 8.1: 

a f{an }n=-N , 

a:= Fa . 

9. ASYMPTOTIC WORK ESTIMATE 

We now come to the application of Algorithm 8.1 to the discretized Wiener- 
Hopf equation (1.2), which by (3.1) has the symbol 

(9.1) a(C) = 1 + K+(d(C)/h) + K4(3(C-1)/h) 

When one applies Algorithm 8.1 to equation (1.2), there is a surprising feature: 
The quadrature weights are never computed. In the case of exponential decay as 
studied in ?7, we can use Theorem 8.2 to obtain an asymptotic bound on the 
computational work needed to compute the solution of (1.2) to the level of the 
discretization error. 

Theorem 9.1. Under the assumptions of Theorem 7.2, the computation of the 
solution of the discretized Wiener-Hopf equation (1.2) (or of the 'corrected' equa- 
tion (3.7)) with an error bounded in l1? by const * hM, requires a number of 
operations proportional to 

h-'Ilogh12 as h -*0. 

Proof. With a(4) of (9.1), we may choose p = e-2h/2 in Theorem 8.3, to get 

(9.2) |Xn-Ix, < - e-h h(N+n) n > 0 
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for the error introduced by Algorithm 8. 1, with a constant C which is indepen- 
dent of the meshwidth h. The right-hand side in (9.2) is bounded by const * hM 
if N is chosen to satisfy 

(9.3) N > cm logA2hM+2I - ALhlg~h 
for some sufficiently large constant c. Since Algorithm 8.1 requires O(N log N) 
operations, this gives the desired work estimate for equation (1.2). 

For the small-rank perturbation (3.7) one can use the Sherman-Morrison- 
Woodbury formula, Golub and Van Loan [14, p. 3], which requires the solution 
of discrete Wiener-Hopf equations (1.2) for J + 1 (with J of (3.6)) different 
right-hand sides which are again exponentially decaying if the correction weights 
are chosen as in ?4. The result follows as before. O 

10. NUMERICAL EXPERIMENTS 

In this section we report on numerical results for the Milne equation of the 
theory of radiation, whose homogeneous version was already studied by Wiener 
and Hopf, see also Krein [18, ? 15]: 

(10.1) x(t)- - El(It- TI)X(T)dT= f(t), t>O 2 

where a < 1 is a parameter, and E1 (t) = f T e-/r dr is the exponential inte- 
gral, whose Laplace transform is s-1 log(l + s). (The kernel has a logarithmic 
singularity at 0, and decays exponentially.) 

We give numerical results for a = 0.9, for two choices of f . In our first 
example we take f (t)-1 . For the numerical treatment this presents the minor 
inconvenience that f does not tend to 0 as t approaches infinity. However, 
we can modify our equations similarly to the modified finite section approach 
of Sloan and Spence [27]. Taking the limit t -* oo in equation (10.1) (which 
will be justified in a minute), we have 

X(OO) - a J E (ITI)x (oo) dT = f (X) 

i.e., 

(10.2) x(oo) = 1-) 

Hence, xO(t) - x(t) - x(oo) satisfies equation (10.1) with the right-hand side 

f0 (t) = f (t) - x(oo) + 2 J F1 (1<) dT * x(X) 

which in our case is the exponentially decaying function 

(10.3) f?(t) = 21 ) (E(T) dT - 1) 

Conversely, since the solution x?(t) of equation (10.1) with right-hand side 
(10.3) is known to decay exponentially (cf. ?7), taking the limit in (10.1) is 
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justified a posteriori, and x(t) = x?(t) + x(oo) is the unique bounded solution 
of (10.1) with f(t) 1. 

We have applied the operational quadrature method based on the second- 
order backward differentiation formula 3(C) - - 2C + I C2 . The correction 
weights (3.6) have been chosen so that constants are integrated exactly on an 
interval near 0, i.e., 

nh n 

(10.4a) hK(n, 0; h) = El(T)d -hEk(n-j;h) for O<nh<2, 
j=0 

and 

(10.4b) K(n,0;h)=-'El(nh) for nh>2. 

It is only in (1 0.4a) that the quadrature weights k(n; h) as defined by (3.1) are 
needed. These were computed as described in [19, ?7]. 

We have used Algorithm 8.1 with 

(10.5) a(;) = 1 -a Re ;(d ) log (1 + ()) 

for the solution of the discrete Wiener-Hopf equations 

00 

(10.6) un - ahEk(n - j; h)uj =f 0(nh) , n > 0 
1=0 

00 

(10.7) vn - ahEk(n - j; h)v =-hK(n, 0; h), n > 0 . 
j=0 

The solution of the rank-i perturbed Wiener-Hopf equation 
00 

( 10.8) n?-2h 1? k(n - j; h) x? - a hK(n , ?; h) xo =f ?(nh), n O, 
j=O 

is then given by the Sherman-Morrison formula, see [14]: 
_ Uovn 

(10.9) Xn+ = Un vo 

Finally, we have set 

(10.10) Xn = x 0+ x(OO) 

as an approximation of x(nh). 
In Figure 1 (next page) we give the numerical solutions obtained for h = 1/32 

and Nh = 1, 2, 4, 8, 16 , where N is the truncation parameter in Algorithm 
8.1. 

In Figures 2 and 3 (next page) we show the relative errors of the method in 
dependence of the meshwidth h at t = 0 (where the maximum error occurs) 
and at t = 4. Here we have always used Nh = 32 in Algorithm 8.1. The 
solid lines indicate the errors of xn as constructed above, the dashed lines give 
the errors of the method without end-term correction, i.e., of un + x(oo), with 
un given as the solution of (10.6). We note that for the present problem with 
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FIGURE 1. Solution curves 
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FIGURES 2 and 3. Error vs. meshwidth at t = 0 and t = 4 

f(t) I the value x(0) is known analytically, see Krein [18, formula (8.9)]: 
x(0) = (1 -)- 1/2. The reference value at t = 4 has been obtained numerically, 
using various discretization methods with small meshwidths. 

As a second example, which shows the behavior of the method for non- 
smooth data, we have chosen 

f(t) {= 1 0<t<8 

Figure 4 shows the numerical results obtained with h = 8 and 
Nh= 32. 
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FIGURE 4. Solution curves of second example 
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